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Abstract 

This study presents the development of a Multiple Linear Regression (MLR) 

model to predict the tearing strength of laser-engraved denim garments in both 

the warp and weft directions, based on key input parameters: Dot Per Inch (DPI) 

and pixel time. The model achieved excellent predictive accuracy, with R² values 

of 0.9967 for the warp direction and 0.9911 for the weft direction, indicating that 

over 99% of the variability in tearing strength was explained by the model. The 

Pearson correlation coefficients (0.9983 for warp, 0.9956 for weft) and 

Spearman’s rank correlation coefficients (1 for warp, 0.9833 for weft) further 

confirm the strength of the relationship between the predicted and actual values. 

The Mean Absolute Percentage Error (MAEP) values of 0.8783% (warp) and 

1.6837% (weft) demonstrate the model’s high accuracy, with significantly lower 

errors compared to previous fuzzy logic model. Residual analysis confirmed the 

assumptions of normality, homoscedasticity, and independence, validating the 

model’s reliability. The MLR model provides a robust tool for optimizing laser 

engraving parameters in denim manufacturing, reducing the need for trial-and-

error testing and ensuring consistent product quality. 
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Introduction 

Denim is a heavy cotton twill fabric, typically dyed with indigo, that is widely used in the 

production of jeans and other garments (Bilisik & Demiryurek, 2011). Its distinctive weave, 

which creates diagonal ribbing, provides both durability and flexibility, making it suitable for 

a variety of clothing items, including workwear and casual apparel (Lord & Mohamed, 1982). 

Over time, denim has become a key component of global fashion, known for its ability to 

develop a unique patina with wear, adding to its appeal. Modern innovations in denim, such 

as laser engraving, continue to expand its versatility and aesthetic possibilities (Khalil, 2015). 

Laser engraving on denim garments has gained popularity as a modern alternative to 

traditional denim distressing techniques, such as sandblasting and acid washing, offering 

more precision and design flexibility (Nayak & Padhye, 2016). This technology utilizes focused 
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laser beams to create intricate patterns, textures, and fading effects without physical contact 

with the fabric, resulting in cleaner, crisper designs (Kan, 2014). One of the significant 

advantages of laser engraving is its ability to produce high-quality, permanent marks with 

reduced environmental impact, as it eliminates the need for toxic chemicals and water (Kan et 

al., 2010). The process also allows for real-time control of laser power, ensuring that the fabric 

is not damaged, such as by unwanted charring or excessive fading (Jucienė et al., 2014). As 

laser technology continues to evolve, it presents an exciting opportunity for the fashion 

industry to achieve sustainable, customized, and innovative denim designs. 

The effect of dots per inch (DPI) and pixel time (μs) on various properties of denim garments 

has been a subject of recent research, particularly in the context of laser engraving technology. 

DPI, which refers to the resolution of the laser engraving process, directly influences the 

precision and clarity of the designs etched on the denim fabric. Higher DPI values tend to 

result in more detailed and finer engravings, which can enhance the aesthetic appeal of the 

garment but may also impact the fabric’s strength and texture. On the other hand, Pixel Time 

controls the exposure time of the laser beam, influencing the depth and intensity of the 

engraved patterns. Longer Pixel Time can lead to more pronounced fading and deeper 

engravings, which could potentially weaken the fabric if overexposed (Kan et al., 2010; Nayak 

& Padhye, 2016). 

The combination of DPI and Pixel Time affect multiple fabric properties, including tear 

strength, color fading, and fabric durability. For instance, higher DPI coupled with excessive 

Pixel Time can cause a reduction in fabric integrity, particularly in terms of tear strength, as 

the laser removes more material from the surface (Kan, 2014). Moreover, the laser process, 

when optimized, can achieve a balance between aesthetic enhancements and the preservation 

of fabric strength, making it a more sustainable option compared to traditional distressing 

methods like sandblasting (Ortiz-Morales et al., 2003). These laser settings also influence the 

appearance of fading—a key characteristic of denim fashion—by allowing precise control over 

the extent and pattern of the fading. Sarkar et al. studied the effect of CO2 laser engraving on 

100% cotton denim, focusing on dots per inch (DPI) and pixel time. The results showed that 

higher DPI and longer Pixel Time significantly reduced fabric weight, tearing strength, and 

crease recovery angle, with tearing strength decreasing by up to 66% (Sarkar et al., 2015). While 

the laser treatment enhanced aesthetics, it also weakened the fabric, making it softer and more 

prone to creasing. The study highlights the need for balancing laser intensity to maintain fabric 

durability while achieving the desired design effects (Sarkar et al., 2015). The optimal laser 

parameters, including DPI and Pixel Time, depend on the specific application and the desired 

effect on the garment’s properties. Researchers have noted that understanding the interplay 

between these parameters is crucial for manufacturers to avoid compromising fabric 

performance while achieving the desired visual effects (Sarkar et al., 2022). 

A prediction model for tearing strength is necessary to accurately forecast fabric performance 

under stress, ensuring product quality and durability in textile manufacturing. It helps 

manufacturers optimize production processes, reduce material waste, and enhance the design 

of fabrics for specific applications, ultimately improving cost-efficiency and product 

reliability. 

Eltayib et al. developed a multiple linear regression model to predict fabric tear strength based 

on yarn count, yarn tensile strength, and fabric linear density. The study analyzed nine fabric 
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samples, revealing significant correlations between these variables and tear strength in both 

the warp and weft directions, providing valuable insights for fabric optimization in industrial 

applications (Eltayib et al., 2016).Gültekin et al. applied the Decision Tree Regression method 

to predict the tear strength of woven fabrics, utilizing factors such as weave type, fabric 

density, filament fineness, and weave direction. Their model demonstrated strong predictive 

accuracy with an R² value of 0.97, highlighting the potential of machine learning for improving 

quality control in textile manufacturing (Gültekin et al., 2021). The study by Ahirwar and 

Behera focuses on predicting the tear strength of bed sheet fabric using a machine learning-

based artificial neural network (ANN). The research developed a novel algorithm that takes 

fabric parameters as input and predicts the warp and weft tear strength as output. Among 

various algorithms tested, the XGBoost model (Extreme Gradient Boosting) provided the best 

results, with training accuracy of 99.99%. The model’s potential to predict fabric tear strength 

accurately could be highly beneficial for textile industries, optimizing production and 

reducing costs (Ahirwar & Behera, 2024). Bilisik and Demiryurek analyzed the tensile and tear 

properties of abraded denim fabrics with different structural patterns using statistical and 

artificial neural network (ANN) models. The study explored the impact of abrasion cycles on 

the mechanical properties of traditional and newly developed denim fabrics. The results 

indicated that abrasion cycles generally decrease tensile and tear strengths for all fabric types. 

However, ANN models outperformed regression models, providing more accurate 

predictions of fabric properties, with high correlation coefficients and low Mean Absolute 

Percent Errors (MAPE) (Bilisik & Demiryurek, 2011). Kotb et al. investigated factors 

influencing the tearing strength of pile fabrics produced on face-to-face looms with dobby 

devices. Using fractional factorial experiments, the study identified significant factors such as 

the type and count of weft yarns, weft density, ground structure, and tension on ground yarns, 

which strongly affect tearing strength. The results revealed that polyester weft yarns and 

higher weft yarn counts generally decreased tearing strength in the warp direction but 

increased it in the weft direction. Additionally, pile shape and shifting of pile designation had 

lesser impacts on tear strength. Regression models developed from these findings provide 

valuable insights for designing fabrics with improved tearing strength. 

While Sarkar et al. (2022) developed a fuzzy logic-based model to predict the tearing strength 

of laser-engraved denim garments, their model primarily focused on using complex fuzzy 

logic to relate laser parameters such as Dots Per Inch (DPI) and Pixel Time (PT) to fabric tearing 

strength in both warp and weft directions. Although their model provided valuable insights, 

the complexity of the fuzzy logic approach may limit its accessibility and practical application 

for certain textile manufacturers. Furthermore, while fuzzy logic showed promising results, 

there is limited research comparing it to simpler predictive methods, particularly in the context 

of laser-engraved denim. This leaves a gap in understanding whether simpler regression 

techniques, such as Multiple Linear Regression (MLR), could offer equal or superior predictive 

accuracy while being more straightforward to implement and interpret. Additionally, existing 

studies, including that of Sarkar et al. (2022), have not sufficiently explored or validated the 

use of MLR for predicting tearing strength in laser-engraved denim. Furthermore, while 

Sarkar et al. (2022) focused on predicting the tearing strength using fuzzy logic, they did not 

consider the potential of MLR to deliver better prediction accuracy. Finally, no prior research 

has comprehensively modeled both the warp and weft tearing strength using MLR, creating 

an opportunity to bridge this gap. 
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This research seeks to fill this gap by using Multiple Linear Regression (MLR) to predict the 

tearing strength of laser-engraved denim garments, utilizing the same input parameters (DPI 

and Pixel Time) as Sarkar et al. (2022). Given that MLR has been shown to provide better 

prediction accuracy compared to fuzzy logic, this study will evaluate MLR’s performance 

against the fuzzy logic-based model from Sarkar et al., highlighting the advantages of MLR in 

terms of both predictive power and simplicity. By directly comparing these two methods, this 

study will contribute valuable insights into the effectiveness of simpler regression-based 

models for denim garments tearing strength prediction. This approach will offer a more 

efficient, accurate, and accessible tool for manufacturers in the textile industry, providing a 

new and improved model for predicting tearing strength in laser-engraved denim garments. 

Methodology 

Data Source 

The data used in this study were obtained, with permission, from a research paper by Sarkar, 

Al Faruque, and Khalil (Sarkar et al., 2022). The dataset, which includes two laser engraving 

parameters—Dots Per Inch (DPI) and Pixel Time (PT)—along with the corresponding tearing 

strength values measured in both the warp and weft directions, is shown in Table 1. 

Table 1. The dataset includes two laser engraving parameters—Dots Per Inch (DPI) and Pixel 

Time (PT)—along with the corresponding tearing strength values measured in both the warp 

and weft directions (Sarkar et al., 2022) . 

Sl 

Input parameters Output parameters 

Dot Per Inch Pixel Time (μs) 
Tearing Strength - Warp 

Way (lb) 

Tearing Strength - Weft 

Way (lb) 

1 15 100 6.90 7.21 

2 15 150 5.81 6.40 

3 15 200 5.10 5.30 

4 20 100 5.79 5.90 

5 20 150 4.98 5.36 

6 20 200 4.12 4.30 

7 25 100 4.88 5.15 

8 25 150 3.97 4.10 

9 25 200 3.20 3.30 

Data Preprocessing and Feature Scaling 

To prepare the data for the modeling process, the DPI and Pixel Time (PT) features were 

standardized using the StandardScaler from the scikit-learn library. Standardization ensures 

that both features have a mean of 0 and a standard deviation of 1, which improves the 

performance and accuracy of the regression model by preventing features with larger scales 

from dominating the model. 

Multiple Linear Regression (MLR) Model 

The MLR model was used to predict the tearing strength in both the warp and weft directions. 

The MLR model is represented by the equation 1: 

𝑦̂𝑖 = 𝑚̂1𝑥1𝑖 + 𝑚̂2𝑥2𝑖 + ⋯ + 𝑚̂𝑘𝑥𝑘𝑖 + 𝑐̂……………………………..………(1) 
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where: 

• 𝑦̂𝑖 represents the predicted value of tearing strength for the i-th observation, 

• x1i, x2i,…,xki are the predictor values for the i-th sample, 

• 𝑚̂1, 𝑚̂2, … … … , 𝑚̂𝑘are the estimated coefficients corresponding to each predictor, and 

• 𝑐̂ is the intercept. 

To estimate the model parameters, the least squares method was applied. The objective is to 

minimize the sum of squared residuals between the observed and predicted values of tearing 

strength. The objective function is expressed as: 

𝜉 = ∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)
2 …………………………..………(2) 

Substituting the model equation for 𝑦̂𝑖, the objective function becomes:  

To minimize the objective function, the partial derivatives of ξ with respect to the coefficients 

𝑚̂1, 𝑚̂2, … , 𝑚̂𝑘, and the intercept 𝑐̂ are computed. The partial derivatives are as follows: 

To obtain the values of the coefficients 𝑚̂1, 𝑚̂2, … , 𝑚̂𝑘, and the intercept 𝑐̂, the partial 

derivatives are set to zero. This results in the normal equations, which are a system of linear 

equations that can be solved for the unknowns: 

 

    𝜉 = ∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑚̂1𝑥1𝑖 − 𝑚̂2𝑥2𝑖 − ⋯ − 𝑚̂𝑘𝑥𝑘𝑖 − 𝑐̂)2 …………………….………(3) 

𝜕𝜉

𝜕𝑐̂
= −2 ∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑚̂1𝑥1𝑖 − 𝑚̂2𝑥2𝑖 − ⋯ − 𝑚̂𝑘𝑥𝑘𝑖 − 𝑐̂) ……………..………(4) 

𝜕𝜉

𝜕𝑚̂1

= −2 ∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑚̂1𝑥1𝑖 − 𝑚̂2𝑥2𝑖 − ⋯ − 𝑚̂𝑘𝑥𝑘𝑖 − 𝑐̂)𝑥1𝑖  ……………..………(5) 

𝜕𝜉

𝜕𝑚̂2

= −2 ∑  

𝑖=1

𝑛

(𝑦𝑖 − 𝑚̂1𝑥1𝑖 − 𝑚̂2𝑥2𝑖 − ⋯ − 𝑚̂𝑘𝑥𝑘𝑖 − 𝑐̂)𝑥2𝑖 ……………..………(6) 

. 

. 
 

𝜕𝜉

𝜕𝑚̂𝑘

= −2 ∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑚̂1𝑥1𝑖 − 𝑚̂2𝑥2𝑖 − ⋯ − 𝑚̂𝑘𝑥𝑘𝑖 − 𝑐̂)𝑥𝑘𝑖 ……………..………(7) 

∑  

𝑛

𝑖=1

𝑦𝑖 = 𝑚̂1 ∑  

𝑛

𝑖=1

𝑥1𝑖 + 𝑚̂2 ∑  

𝑛

𝑖=1

𝑥2𝑖 + ⋯ 𝑚̂𝑘 ∑  

𝑛

𝑖=1

𝑥𝑘𝑖 + 𝑛𝑐̂ ……….………(8) 

∑  

𝑛

𝑖=1

𝑥1𝑖𝑦𝑖 = 𝑚̂1 ∑  

𝑛

𝑖=1

𝑥1𝑖
2 + 𝑚̂2 ∑  

𝑛

𝑖=1

𝑥1𝑖𝑥2𝑖 + ⋯ 𝑚̂𝑘 ∑  

𝑛

𝑖=1

𝑥1𝑖𝑥𝑘𝑖 + 𝑐̂ ∑  

𝑛

𝑖=1

𝑥1𝑖  ……….....……(9) 
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For two independent variables, 

𝑦̂𝑖 = 𝑚̂1𝑥1𝑖 + 𝑚̂2𝑥2𝑖 + 𝑐̂ …………….....(12) 

The resulting normal equations are 

∑  

𝑛

𝑖=1

𝑦𝑖 = 𝑚̂1 ∑  

𝑛

𝑖=1

𝑥1𝑖 + 𝑚̂2 ∑  

𝑛

𝑖=1

𝑥2𝑖 + 𝑛𝑐̂ ……………..…..(13) 

∑  

𝑛

𝑖=1

𝑥1𝑖𝑦𝑖 = 𝑚̂1 ∑  

𝑛

𝑖=1

𝑥1𝑖
2 + 𝑚̂2 ∑  

𝑛

𝑖=1

𝑥1𝑖𝑥2𝑖 + 𝑐̂ ∑  

𝑛

𝑖=1

𝑥1𝑖  ……….……..….(14) 

∑  

𝑛

𝑖=1

𝑥2𝑖𝑦𝑖 = 𝑚̂1 ∑  

𝑛

𝑖=1

𝑥1𝑖𝑥2𝑖 + 𝑚̂2 ∑  

𝑛

𝑖=1

𝑥2𝑖
2 + 𝑐̂ ∑  

𝑛

𝑖=1

𝑥2𝑖  ……………..…..(15) 

Software Implementation 

The regression analysis and model evaluation were implemented using Python programming 

language, utilizing libraries, pandas for data manipulation, scikit-learn for regression 

modeling, and NumPy for mathematical operations. The StandardScaler from scikit-learn was 

used for standardizing the features before fitting the regression model. 

Model Evaluation Metrics 

To assess the performance of the Multiple Linear Regression (MLR) model, several evaluation 

metrics were employed. R² (Coefficient of Determination) was used to determine the 

proportion of variance between the observed data and predicted data found from the model. 

The Pearson Correlation Coefficient (R) was calculated to measure the linear correlation 

between the observed and predicted values. The Mean Absolute Error Percentage (MAEP) 

quantifies the magnitude of error as a percentage of the actual values, while Mean Squared 

Error (MSE) and its square root, Root Mean Squared Error (RMSE), provide insights into the 

overall error and the magnitude of the error in the same units as the target variable. Percent 

Bias (PBIAS) evaluates whether the model tends to overestimate or underestimate the 

observed values. The Standard Error of Estimate (SEE) indicates the degree to which the model 

fits the data, and the Explained Variance Score measures the proportion of variance explained 

by the model. Additionally, Adjusted R² provides an adjusted version of R² that accounts for 

the number of predictors in the model. Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta 

Efficiency (KGE) were also used to assess the model’s predictive skill, considering factors 

∑  

𝑛

𝑖=1

𝑥2𝑖𝑦𝑖 = 𝑚̂1 ∑  

𝑛

𝑖=1

𝑥1𝑖𝑥2𝑖 + 𝑚̂2 ∑  

𝑛

𝑖=1

𝑥2𝑖
2 + ⋯ 𝑚̂𝑘 ∑  

𝑛

𝑖=1

𝑥2𝑖𝑥𝑘𝑖 + 𝑐̂ ∑  

𝑛

𝑖=1

𝑥2𝑖 ………...……(10) 

. 

. 
 

∑  

𝑛

𝑖=1

𝑥𝑘𝑖𝑦𝑖 = 𝑚̂1 ∑  

𝑛

𝑖=1

𝑥1𝑖𝑥𝑘𝑖 + 𝑚̂2 ∑  

𝑛

𝑖=1

𝑥2𝑖𝑥𝑘𝑖 + ⋯ 𝑚̂𝑘 ∑  

𝑛

𝑖=1

𝑥𝑘𝑖
2 + 𝑐̂ ∑  

𝑛

𝑖=1

𝑥𝑘𝑖 ……..………(11) 
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variance, correlation, and bias. Spearman’s Rank Correlation Coefficient (ρ) measures the 

strength and direction of the monotonic relationship between the observed and predicted 

values. These metrics were computed to evaluate the accuracy, reliability, and robustness of 

the model’s predictions. Mathematical equations of the above matrices are shown below: 

 

1. Coefficient of Determination,  𝑅2 = 1 −
∑(𝑦true−𝑦pred)

2

∑(𝑦true−𝑦̅)2
……………………………..……..(16) 

Where, ytrue represents actual or observed values, ypred is the predicted values from the 

regression model and 𝑦̅ is the mean of the actual values. 

2. Pearson Correlation Coefficient, 𝑅 =
∑(𝑦true−𝑦̅)⋅(𝑦pred−𝑦pred̅̅ ̅̅ ̅̅ ̅̅ )

√∑(𝑦true−𝑦̅)2⋅∑(𝑦pred−𝑦pred̅̅ ̅̅ ̅̅ ̅̅ )
2
 ………………...………..(17) 

Where , n is the number of observations and 𝑦pred̅̅ ̅̅ ̅̅  is the mean of the predicted values. 

3. Mean Squared Error, (𝑀𝑆𝐸) =
1

𝑛
∑(𝑦true − 𝑦pred)

2
……………………….….…….…...…(18) 

4. Root Mean Squared Error, (𝑅𝑀𝑆𝐸) = √
1

𝑛
∑(𝑦true − 𝑦pred)

2
……………….……….…….(19) 

5. Percentage Bias, (𝑃𝐵𝐼𝐴𝑆) =
∑(𝑦true−𝑦pred)

∑ 𝑦true
× 100…………………………..…….……….…(20) 

6. Nash-Sutcliffe Efficiency, (𝑁𝑆𝐸) = 1 −
∑(𝑦true−𝑦pred)

2

∑(𝑦true−𝑦̅)2 ………………………………..……(21) 

7. Adjusted 𝑅2 = 1 − (
1−𝑅2

𝑛−1
) × (𝑛 − 𝑝 − 1)………………………………………..…….……(22) 

Where n is the number of observations and p is the number of predictors. 

8. Mean Absolute Percentage Error, (𝑀𝐴𝑃𝐸) =
1

𝑛
∑ |

𝑦true−𝑦pred

𝑦true
| × 100……………..…….…(23) 

9. Mean Squared Logarithmic Error, (𝑀𝑆𝐿𝐸) =
1

𝑛
∑(log(1 + 𝑦true) − log(1 + 𝑦pred))

2
……(24) 

10. Standard Error of the Estimate, (𝑆𝐸𝐸) = √
1

𝑛−2
∑(𝑦true − 𝑦pred)

2
……………..……….…..(25) 

11. Explained Variance Score = 1 −
Var(𝑦true−𝑦pred)

Var(𝑦true)
……………………………..………..….….(26) 

Here, ‘Var’ represents variance function, which computes the variance of the data. 

12. Kling-Gupta Efficiency, 𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎pred

𝜎true
− 1)

2

+ (
𝜇pred

𝜇true
− 1)

2

….….….…..(27) 

Where: 

• r is the correlation coefficient between the predicted and observed values. 

• σpred is the standard deviation of the predicted values. 

• σtrue is the standard deviation of the actual values. 

• μpred is the mean of the predicted values. 

• μtrue is the mean of the actual values. 

13. Spearman’s Rank Correlation, 𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
…………………….…………………….(28) 

Where: 

• di is the difference between the ranks of the paired data points 

• ∑di2 is the sum of the squared rank differences. 
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Results and Discussion 

Development and Prediction of MLR model 

The developed Multiple Linear Regression (MLR) models for predicting the tearing strength 

of laser-engraved denim garments in the warp and weft directions are represented by  the 

equation (29) to (30).   

Y1 = 11.387 − (0.192 × x1) − (0.01767 × x2)…………………………….…………………(29) 

Y2 = 12.144 − (0.212 × x1) − (0.01787 × x2)……………………………………………….(30) 

Here,  

• Y1 is the Tearing strength in warp way (lb) 

• Y2 is the Tearing strength in weft way (lb) 

• x1 is Dot Per Inch and  

• x2 is Pixel Time (μs) 

Both models indicate a negative impact of DPI and pixel time on tearing strength. In the warp 

direction, an increase in DPI decreases strength by 0.192 lb, and in the weft direction, DPI 

reduces strength by 0.212 lb. Pixel time reduces strength similarly in both directions, with a 

decrease of 0.01767 lb for warp and 0.01787 lb for weft. These results underscore the 

importance of controlling laser parameters to optimize fabric durability. 

The table 2 presents the actual and MLR-predicted values of tearing strength in both the warp 

and weft directions, along with the absolute prediction errors for various combinations of Dot 

Per Inch (DPI) and pixel time. The results show that the MLR model provides relatively 

accurate predictions for both warp and weft tearing strength, with absolute errors generally 

remaining below 4%. This indicates that the MLR model has a high degree of predictive 

accuracy, demonstrating its potential for practical use in predicting tearing strength based on 

laser engraving parameters. 

Table 2.  Prediction of tearing strength by MLR Model. 

Sl 

Dot 

Per 

Inch 

Pixel 

Time 

(μs) 

Tearing Strength-Warp Way Tearing Strength-Weft Way 

Actual 

Value 

(N) 

MLR 

Predicted 

Value (N) 

Absolute 

Error (%) 

Actual 

Value 

(N) 

MLR 

Predicted 

Value (N) 

Absolute 

Error (%) 

1. 15 100 6.9 6.79 1.5862 7.21 7.18 0.45 

2. 15 150 5.81 5.93 2.1037 6.40 6.28 1.81 

3. 15 200 5.1 5.07 0.512 5.30 5.39 1.72 

4. 20 100 5.79 5.83 0.7004 5.90 6.12 3.69 

5. 20 150 4.98 4.97 0.1562 5.36 5.22 2.53 

6. 20 200 4.12 4.11 0.1483 4.30 4.33 0.72 

7. 25 100 4.88 4.87 0.1935 5.15 5.06 1.79 

8. 25 150 3.97 4.01 1.0635 4.10 4.16 1.57 

9. 25 200 3.2 3.15 1.441 3.30 3.27 0.88 

The Figure 1 illustrates the sensitivity of tearing strength to variations in the input parameters, 

Dot Per Inch (DPI) and Pixel Time, for both warp and weft directions. In figure 1(a), the 

sensitivity of tearing strength in the warp direction to changes in DPI and pixel time is shown, 
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where both input parameters exhibit a linear relationship with tearing strength. Similarly, 

figure 1(b) displays the sensitivity of tearing strength in the weft direction, with a similar trend 

observed. The graphs demonstrate that tearing strength decreases as both DPI and pixel time 

increase, highlighting the negative correlation between these inputs and fabric durability in 

both directions. This sensitivity analysis underscores the importance of optimizing DPI and 

pixel time during the laser engraving process to control the tearing strength of denim 

garments. 

 

Figure 1. Sensitivity of tearing strength to variations in the input parameters, Dot Per Inch 

(DPI) and Pixel Time, ( a) warp way (b) weft way 

Figure 2 presents the 3D surface and contour plots for tearing strength in the warp direction, 

showing the sensitivity to variations in Dot Per Inch (DPI) and pixel time. Figure 2(a) displays 

the 3D surface plot, where it is evident that tearing strength decreases as both DPI and pixel 

time increase. The surface shows a smooth downward slope, indicating a consistent reduction 

in strength with higher values of both input parameters. Figure 2(b) complements this by 

showing the contour plot, which visually reinforces the negative relationship between DPI, 

pixel time, and tearing strength. The contour lines gradually move from yellow (higher 

strength) to purple (lower strength), demonstrating how tearing strength in the warp direction 

declines as DPI and pixel time rise. These visualizations clearly illustrate the negative 

sensitivity of warp way tearing strength to these input variables. 

 

Figure 2. (a) 3D surface and (b) contour plots for tearing strength in the warp direction 
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Figure 3(a) and 3(b) presents a similar representation for the weft direction, highlighting the 

same trend of decreasing tearing strength with higher DPI and pixel time. These visualizations 

underscore the sensitivity of tearing strength to these two input parameters, emphasizing the 

negative correlation between both DPI and pixel time with fabric durability in both warp and 

weft directions. 

 

Figure 3. (a) 3D surface and (b) contour plots for tearing strength in the weft direction 

Figure 4 presents the correlation matrix heatmap, which shows the relationships between Dot 

Per Inch (DPI), pixel time, and the tearing strength in both the warp and weft directions. The 

matrix reveals that DPI and pixel time are uncorrelated with each other (correlation of 0.00). 

Both DPI and pixel time exhibit a moderate negative correlation with tearing strength in the 

warp (−0.74 and −0.67, respectively) and weft (−0.76 and −0.64, respectively) directions, 

indicating that as DPI and pixel time increase, the tearing strength in both directions decreases. 

Additionally, the high positive correlation (0.99) between the warp and weft tearing strengths 

suggests that the two directions are similarly affected by the input parameters. This heatmap 

effectively confirms the negative impact of increasing DPI and pixel time on the tearing 

strength of the fabric in both warp and weft directions. 

 

Figure 4. The correlation matrix heatmap, which shows the relationships between Dot Per 

Inch (DPI), pixel time, and the tearing strength 
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Statistical Analysis and Validation of Developed Model 

Tables 3 and 4 display the parameters of the MLR model for both the warp and weft directions. 

For the warp way (Table 3), the intercept is 11.3872, with a coefficient of -0.1920 for Dot Per 

Inch (DPI) and -0.0172 for pixel time. The t-statistics for all parameters are significantly high, 

with the intercept having a value of 73.8599, and DPI and pixel time having values of -31.5462 

and -28.2054, respectively. These high values suggest that all parameters are statistically 

significant, and their p-values are extremely small (less than 10−10 ), indicating strong evidence 

against the null hypothesis. The 95% confidence intervals for the coefficients of DPI and pixel 

time do not include zero, further confirming their statistical significance. The results show that 

both DPI and pixel time have a negative impact on tearing strength in the warp direction. For 

the weft way (Table 4), the intercept is 12.1444, with coefficients of -0.2120 for DPI and -0.0179 

for pixel time. Similar to the warp direction, all parameters exhibit significant t-statistics, with 

the intercept being 44.8249, and DPI and pixel time having values of -19.8213 and -16.7047, 

respectively. The p-values are also very small, confirming that all parameters are statistically 

significant. The 95% confidence intervals for DPI and pixel time in the weft way also exclude 

zero, reinforcing their relevance in the model. The negative coefficients for both DPI and pixel 

time suggest that, like in the warp direction, increasing these parameters results in a decrease 

in tearing strength in the weft direction. These results emphasize the consistent effect of DPI 

and pixel time on tearing strength across both warp and weft directions. 

Table 3. Parameters of the MLR model (Warp way) 

Model 

parameter 
Coefficients 

Standard 

Error 
t Stat P-value 

Lower 

95% 
Upper 95% 

Intercept 11.3872 0.1542 73.8599 4.15×10-10 11.0100 11.7645 

Dot Per Inch -0.1920 0.0061 -31.5462 6.74×10-08 -0.2069 -0.1771 

Pixel Time -0.0172 0.0006 -28.2054 1.31×10-07 -0.0187 -0.0157 

Table 4. Parameters of the MLR model (Weft way) 

Model 

parameter  
Coefficients 

Standard 

Error 
t Stat P-value 

Lower 

95% 
Upper 95% 

Intercept 12.1444 0.2709 44.8249 8.26×10-09 11.4815 12.8074 

Dot Per Inch -0.2120 0.0107 -19.8213 1.07×10-06 -0.2382 -0.1858 

Pixel Time -0.0179 0.0011 -16.7047 2.94×10-06 -0.0205 -0.0152 

Figure 5 displays a scatter plot with a strong linear relationship between the actual and 

predicted tearing strength in the warp direction, as indicated by the R² value of 0.9967. This 

suggests that the MLR model explains approximately 99.67% of the variability in the data, 

with a near-perfect correlation between the actual and predicted values. Figure 6 also shows 

the predicted vs. actual values for the warp direction with an R² value of 0.9911. Although 

slightly lower than the previous plot, this still indicates an excellent fit, where 99.11% of the 

variability in the actual tearing strength is captured by the MLR model. The points are tightly 

clustered along the fitted line, demonstrating high predictive accuracy. Both figures confirm 

the reliability and high performance of the MLR model for predicting tearing strength in the 

warp direction, with minimal deviation between the actual and predicted values. 
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Figure 5. Correlation between actual and predicted values of Tearing Strength (warp way) 

 

Figure 6. Correlation between actual and predicted values of Tearing Strength (weft way) 

The evaluation metrics for the Multiple Linear Regression (MLR) model in predicting tearing 

strength for both warp and weft directions demonstrate excellent performance that shown in 

Table 5. The model shows high R² values of 0.9967 for the warp and 0.9911 for the weft, 

indicating that the model explains over 99% of the variability in the data for both directions. 

The Pearson correlation coefficients (0.9983 for warp and 0.9956 for weft) further confirm a 

strong linear relationship between the predicted and actual values. Additionally, the 

Spearman’s rank correlation of 1 for the warp and 0.9833 for the weft suggests perfect and 

near-perfect rank ordering of the predictions. The model also exhibits very low Mean Absolute 

Percentage Error (MAEP), with values of 0.8783% for the warp and 1.6837% for the weft, and 

minimal Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), demonstrating 

precise predictions. Other metrics, such as the Percentage Bias (PBIAS) near zero, Standard 

Error of the Estimate (SEE), and Adjusted R², indicate no significant bias and minimal error in 

the model’s predictions. The model also performs exceptionally in the Nash-Sutcliffe 
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Efficiency (NSE) and Kling-Gupta Efficiency (KGE) metrics, with values above 0.99 for both 

warp and weft, further confirming its accuracy and reliability. These results highlight the 

robustness and high predictive capability of the MLR model in forecasting the tearing strength 

of laser-engraved denim garments. 

Table 5. Evaluation metrics for the Multiple Linear Regression (MLR) model 

Sl Evaluation Matrices Warp Way Weft Way 

1.  Coefficient of Determination (R2) 0.9967 0.9911 

2.  Pearson Correlation Coefficient  (R) 0.9983 0.9956 

3.  Spearman’s rank correlation coefficient (ρ) 1 0.9833 

4.  Mean Absolute Percentage Error (MAEP) 0.8783 1.6837 

5.  Mean Squared Error (MSE) 0.0037 0.0114 

6.  Root Mean Squared Error (RMSE) 0.0609 0.1070 

7.  Mean Squared Logarithmic Error (MSLE) 0.00008489 0.00026275 

8.  Percentage Bias (PBIAS) -0.000000002235 0.000000002127 

9.  Standard Error of the Estimate (SEE) 0.0690 0.1213 

10.  Explained Variance Score 0.9967 0.9911 

11.  Adjusted R2 0.9962 0.9899 

12.  Nash-Sutcliffe Efficiency (NSE) 0.9967 0.9911 

13.  Kling-Gupta Efficiency (KGE) 0.9976 0.9937 

Figure 7 and Figure 8 show the comparison between the experimental values and MLR 

predicted values for tearing strength in the warp and weft directions, respectively.  

 

Figure 7. Comparison between the experimental values and MLR predicted values with line 

diagram for tearing strength in the warp directions 

In Figure 7, the plot for the warp direction demonstrates that the predicted values closely 

follow the experimental data across all trials, with the predicted values (represented by the 

orange line) aligning almost perfectly with the experimental values (represented by the blue 

line). This indicates a high degree of accuracy in the MLR model’s predictions for the warp 

way, confirming the model’s reliability. Similarly, Figure 8 shows the comparison for the weft 

direction, where the predicted values also closely match the experimental values, although 

some small deviations are present. The overall consistency between the experimental and 

predicted values in both figures highlights the robustness of the MLR model in accurately 

predicting tearing strength for both warp and weft directions. 
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Figure 8. Comparison between the experimental values and MLR predicted values with line 

diagram for tearing strength in the weft directions 

Figure 9 and Figure 10 show the residual plots for the MLR model’s predicted tearing strength 

in both the warp and weft directions, respectively. In Figure 9, for the warp direction, the 

normal probability plot shows that the residuals are approximately normally distributed, as 

the points lie closely along the reference line.  

 

Figure 9. Residual plots for the MLR model (warp way) 

This indicates that the assumption of normality for the residuals is met. The versus fits plot 

shows no clear patterns, suggesting that the model’s errors are randomly distributed, which 

is an indication of homoscedasticity (constant variance of residuals). The histogram confirms 

that the residuals are mostly centered around zero, further supporting the model’s accuracy. 

The versus order plot shows some minor fluctuations, but overall, there is no systematic 

pattern, which suggests that the errors do not depend on the observation order. 
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Figure 10. Residual plots for the MLR model (weft way) 

In Figure 10, the residual analysis for the weft direction follows a similar pattern. The normal 

probability plot indicates that the residuals are approximately normally distributed, though 

the points deviate slightly from the reference line at both ends. The versus fits plot shows no 

significant pattern in the residuals, indicating that the model is well-behaved with respect to 

variance homogeneity. The histogram for the residuals shows a roughly symmetric 

distribution around zero, suggesting no substantial bias in the model’s predictions. The versus 

order plot reveals some slight variation, but there are no significant trends, confirming that 

the residuals are independent of the order of the observations. Overall, both residual plots 

demonstrate that the MLR model is reliable and adheres to the necessary assumptions for 

accurate predictions. 

Comparison with Previous Study 

When comparing the MLR model with the fuzzy logic model by Sarker et al., the MLR model 

shows superior predictive performance. The R² values for the MLR model are significantly 

higher, with 0.9967 for the warp and 0.9911 for the weft directions, compared to 0.9819 and 

0.9770 for the fuzzy logic model, indicating that the MLR model explains a greater proportion 

of the variability in tearing strength. The Mean Absolute Error Percentage (MAEP) is also 

lower for the MLR model, with 0.8783% for the warp and 1.6837% for the weft, compared to 

3.3414% and 3.5262% in the fuzzy logic model, signifying more accurate predictions. 

Furthermore, the Pearson correlation coefficients (R) for the MLR model are higher (0.9983 for 

warp and 0.9956 for weft) than those for the fuzzy logic model (0.9909 for warp and 0.9885 for 

weft), reflecting a stronger linear relationship between predicted and actual values. These 

results indicate that the MLR model provides more reliable and accurate predictions of tearing 

strength compared to the previously developed fuzzy logic model [10]. 
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Conclusion 

This study successfully developed a Multiple Linear Regression (MLR) model for predicting 

the tearing strength of laser-engraved denim garments in both the warp and weft directions, 

based on key input parameters: Dot Per Inch (DPI) and pixel time. The model demonstrated 

exceptional accuracy, with R² values of 0.9967 for the warp direction and 0.9911 for the weft 

direction, indicating that the model explains over 99% of the variability in the data. The 

performance metrics, such as Pearson correlation coefficients (0.9983 for warp, 0.9956 for weft) 

and Spearman’s rank correlation coefficients (1 for warp, 0.9833 for weft), also confirm the 

strong linear relationship between the predicted and actual values. Additional evaluation 

metrics, including Mean Absolute Percentage Error (MAEP), Mean Squared Error (MSE), and 

Root Mean Squared Error (RMSE), further support the model’s high predictive accuracy and 

low error rates. 

The residual analysis showed that the model adheres to necessary assumptions such as 

normality, homoscedasticity, and independence of residuals, confirming its reliability. The 

practical implications of the MLR model are significant, offering a tool for optimizing laser 

engraving parameters to ensure consistent and high-quality denim products. The model can 

help manufacturers achieve more efficient production by minimizing trial-and-error testing 

and guiding real-time adjustments. However, the linearity assumption in MLR remains a 

limitation, and future research could explore more advanced models, such as non-linear 

techniques, for even greater prediction accuracy. Additionally, expanding the dataset to 

incorporate more variables, such as fabric type and laser power, could further improve the 

model’s generalizability. Overall, the MLR model provides a robust, reliable method for 

predicting tearing strength in laser-engraved denim garments and optimizing the 

manufacturing process. 

Limitations, Future Work, and Practical Implications 

While the MLR model performed well, its primary limitation lies in the assumption of 

linearity, which may not effectively capture complex, nonlinear relationships between input 

parameters and tearing strength. Future research could investigate nonlinear modeling 

approaches, such as support vector machines or neural networks, to improve predictive 

accuracy. Expanding the dataset to include a wider range of laser engraving parameters and 

additional influencing factors—such as fabric type and laser power—could enhance the 

model’s generalizability. Furthermore, validating the model on diverse denim samples and 

integrating real-time production data would increase its robustness and adaptability. 

This study’s findings offer practical benefits for the textile industry, particularly in optimizing 

laser engraving settings to achieve consistent tearing strength. The MLR model can support 

real-time adjustments to DPI and pixel time, reducing reliance on trial-and-error testing and 

improving overall product quality. It also contributes to fabric design optimization and 

minimizes material waste. By leveraging the model, manufacturers can enhance production 

efficiency, ensure consistent outcomes, and better adapt to varying fabric types. 
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