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Abstract 

Ranked Set Sampling (RSS) is a well-established technique that improves 

estimation efficiency by incorporating ranking information before selecting a 

sample. Conventional RSS estimators such as the Mean RSS estimator, is not 

appropriate when observations are measured in rates or are periodical and in 

the presence of skewed or heavy-tailed distributions. This study develops 

credible-alternative Ranked Set Sampling (RSS) estimators, namely the 

Harmonic Mean RSS (HMRSS), Geometric Mean RSS (GMRSS), and Trimmed 

Mean RSS (TMRSS) estimators that are robust to data measured in rate, period 

and less sensitive to extreme values. The proposed RSS estimators were 

validated with artificial datasets with varying values of 𝜎^2 =

0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 𝑘 = 0.1, 0.2,0.3, 0.4,0.5,0.6, 0.7,0.8, 0.9 and 𝛼 =

0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45. Percentage relative efficiency, 

𝑃𝑅𝐸 = [
𝑉𝑎𝑟(𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟)

𝑉𝑎𝑟(𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟)
 × 100]% was used as a criterion to judge the 

efficiency of the proposed  estimators against the orthodox estimators. A 𝑃𝑅𝐸 >

100% indicates efficiency of the proposed estimator over the existing ones. 

Variances of MRSS, HMRSS, GMRSS and TMRSS were 0.0333, 0.00078, 0.0033, 

and 0.0370 respectively, when 𝑛 = 5, 𝑚 = 3, 𝑘 = 0.1, 𝛼 = 0.05 and 𝜎2 = 0.5. 

Results when 𝑛 = 10, 𝑚 = 5, 𝑘 = 0.3, 𝛼 = 0.10 and 𝜎2 = 1.0 were 

0.0333, 0.0005, 0.0060 and 0.0250 respectively, and 0.0286, 0.0004, 0.0071 and 

0.0204 for 𝑛 = 15, 𝑚 =  7, 𝑘 =  0.5, 𝛼 =  0.15 and 𝜎2 = 1.5. The results indicate 

that both HMRSS and GMRSS outperform the orthodox MRSS in terms of 

efficiency, particularly when dealing with skewed or heavy-tailed distributions. 

However, the TMRSS estimator, despite its robustness against outliers, showed 

mixed performance and less efficient to MRSS estimator. 
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Introduction 

Ranked set sampling (RSS), invented by McIntyre (1952), improves the efficiency of estimators 

by incorporating ranking information prior selecting a sample. RSS is efficient (lower 

variance), cost-effective (smaller sample size needed for higher level of precision), robust (less 

sensitive to outliers and skewed data) and has wider scope (suitable for both finite and infinite 

populations) when compared to simple random sampling (SRS). RSS emerged as a remedy to 

challenges in agricultural research, where the cost of measuring crop yield or soil quality is 

exorbitant or time-intensive. Takahasi & Wakimoto (1968), Dell and Clutter (1972) are early 

works on RSS. Notable interventions include and not limited to: Chen et al., 2003; Perron & 
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Sinha 2004; Jemain et al., 2008; Munir et al., 2010; Wolfe, 2012; Al-Omari & Raqab 2013). Recent 

studies extend RSS to more complex sampling strategies: Extreme RSS that selects extreme 

values within ranked sets which is useful for detecting rare events or anomalies, Median RSS 

that reduces bias in skewed distributions, Generalized RSS handling multivariate data and 

complex ranking schemes. Effectiveness of RSS has also been demonstrated by several 

applications and simulation studies across diverse disciplines: Computational statistics 

(Sevinc et al., 2017). Environmental sciences to monitor pollutant levels in air, water, or soil 

and estimating species diversity or biomass in ecological studies with reduced measurement 

costs (Kaur et al., 2010). Medical sciences and public health to improve the efficiency of 

diagnostic tests by ranking patients based on clinical indicators and estimating the prevalence 

of rare diseases or anomalies in large populations. Physical sciences and Engineering as 

industrial quality control measure to evaluate product defects or reliability in manufacturing 

processes (Al-Omari & Ibrahim, 2020). Agriculture sciences to estimate crop yields or soil 

properties using visual ranking or expert judgment and reducing the cost of destructive 

sampling in testing grain quality or nutrient content (Arzu and Derya, 2020). Economics and 

social sciences survey using income level, educational attainment as auxiliary ranking variable 

(Hakan & Ozçomak, 2024). 

In traditional SRS, 𝑛 from 𝑁 units are randomly drawn with or without replacement and all 

selected units are measured. In contrast, RSS selects 𝑛2 from 𝑁 and the selected subjects are 

partition into 𝑘 sets of equal size 𝑛, units in each set are then ranked based on some criterion 

or judgment without considering actual measurement. Unit 𝑦11 is drawn from first group or 

set, 𝑦22 from the second set, 𝑦33 from the third group and so on until 𝑦𝑘𝑘 is selected from 𝑘𝑡ℎ 

set. The reason for the acronym ranked set sampling. While RSS has shown significant 

potential in improving the efficiency of sampling designs, conventional Mean Ranked Set 

Sampling (MRSS) estimator propounded by McIntyre (1952), and its mathematical framework 

developed by Takahasi & Wakimoto (1968) as is not appropriate (may produce biased or 

inefficient estimates) when observations are measured in rates (e.g., inflation) or are periodical 

(time dependent) or the sampled population is heavy-tail. This limitation underscores the need 

for the development of alternative RSS estimator that is robust to ranking errors and applicable 

across a wider range of measuring scenarios. Thus, the study develops alternative (namely: 

Harmonic, Geometric and Trimmed mean) RSS estimators, derive their sampling distributions 

and explore efficiency of the proposed estimators with frontier estimator. 

𝑀𝑅𝑆𝑆 =
1

𝑛
∑ 𝑌𝑖(𝑖)

𝑛

𝑖=1

                       𝑎𝑛𝑑                   𝑉𝑎𝑟(𝑀𝑅𝑆𝑆) =
σ2

𝑛𝑚
                                                  (1) 

Method 

Arithmetic mean is the most commonly used estimator of central tendency, while the 

arithmetic mean is easy to compute and interpret, it is sensitive to outliers and skewed 

distributions, which can lead to a biased estimate. Harmonic, Geometric and Trimmed mean 

are other credible alternatives depending on the nature of the data. However, their 

performance in the context of ranked set sampling framework has not been explored, which 

motivates the current study. 
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Harmonic Mean Ranked Set Sampling Estimator (HMRSS)  

If 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 is a set of observations, then Harmonic Mean (HM) is defined as the reciprocal 

of the arithmetic mean of the reciprocals of the observations. Mathematically, 

𝐻𝑀 =
𝑛

∑
1
𝑥𝑖

𝑛
𝑖=1  

                                                                                                                                                    (2) 

Equation (2) is a non-linear function of random variables 𝑋𝑖𝑗 then Taylor's series expansion is 

used to approximate the mean and variance. Let 𝑇 =
1

𝑛
∑

1

𝑥𝑖

n
i=1  , therefore, 

𝐻𝑀 = 𝑔(𝑇) =
1

𝑇
                      𝑔′(𝑇) =  −

1

𝑇2
          𝑎𝑛𝑑                     𝑔′′(𝑇) =

2

𝑇3
                                    (3) 

 

Needs to be approximated so that 

𝑔(𝑇) ≈
1

𝜇𝑇
−

1

𝜇2𝑇
(𝑇 − 𝜇𝑇) +

1

𝜇3𝑇
(𝑇𝜇𝑇)2                                                                                                          (4)  

Since 𝑇 =
1

𝑛
 ∑

1

𝑥

𝑛
𝑖=1  and if 𝑋 has a mean 𝜇, 𝐸(𝑇) is derived as 

𝐸(𝑇) =
1

𝑛
∑ 𝐸 (

1

𝑋𝑖
)

𝑛

𝑖=1

= 𝐸 (
1

𝑋
)  ≈

1

𝜇
+

𝑉𝑎𝑟(𝑋)

𝜇3
=

1

𝜇
+

𝜎2

𝜇3
= 𝜇𝑇                                                                (5) 

And for large 𝑛, the variance of 𝑇 is 

𝑉𝑎𝑟(𝑇) =
1

𝑛
𝑉𝑎𝑟 (

1

𝑋
) ≈

1

𝑛

𝜎2

𝜇4
=  

𝜎2

𝑛𝜇4
                                                                                                                (6) 

𝐸(𝐻𝑀) = 𝐸[𝑔(𝑇)] ≈
1

𝜇𝑇
+

1

𝜇3𝑇
𝑉𝑎𝑟(𝑇) = 𝜇 −

𝜎2

𝜇3
                                                                     (7) 

To incorporate this into the RSS framework, weights 𝑊𝑖  (∑ 𝑊𝑖 = 1),𝑀
𝑖=1  are needed such that 

𝐻𝑀𝑅𝑆𝑆 =  ∑ 𝑊𝑖𝑔(𝑇)

𝑚

𝑖=1

=  ∑ 𝑊𝑖

𝑛

∑
1
𝑥𝑖

𝑛
𝑖=1

𝑚

𝑖=1

                                                                                      (8) 

And therefore 

𝐸(𝐻𝑀𝑅𝑆𝑆) =   ∑ 𝑊𝑖 (𝜇 −
𝜎2

𝜇3
) = (𝜇 −

𝜎2

𝜇3
)

{𝑀}

{𝑖=1}

∑ 𝑊𝑖 = 𝜇 −
𝜎2

𝜇3

𝑀

𝑖=1

                                             (9) 

With variance 

𝑉𝑎𝑟[𝑔(𝑇)] ≈ [𝑔′(𝜇𝑇)]2𝑉𝑎𝑟(𝑇) = [−
1

𝑇2
]

2

𝑉𝑎𝑟(𝑇) =
1

𝜇4
𝑉𝑎𝑟(𝑇) ≈

(1 +
𝜎2

𝜇2)
2

𝜎2

𝑛𝜇4
                           (10) 

Geometric Mean Ranked Set Sampling Estimator (GMRSS) 

The geometric mean of a set of numbers 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 is the nth root of the product of the 

observations, thus ∑ 𝑥𝑖
𝑛
𝑖=1  
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𝐺𝑀

= {
√𝑥1. 𝑥2 ⋯ 𝑥𝑛
𝑛 ,  for ungrouped data

√𝑥1
𝑓1 . 𝑥2

𝑓2 . ⋯ . 𝑥𝑛
𝑓𝑛

∑ 𝑥𝑖
𝑛
𝑖=1

, for grouped data
                                                                               (11) 

 

The Geometric mean ranked set sampling (GMRSS) estimator utilizes the geometric mean of 

ranked units and is defined as : 

𝐺𝑀𝑅𝑆𝑆𝑆 =  ∏ (𝑋𝑡)
1

𝑛𝑛
𝑖=1 = exp[

1

𝑚
∑ 𝐼𝑛(𝑋𝑡) 𝑚

𝑖=1 ]                                                                                             (12)    

Where 𝑚 is the set size,  𝑋𝑡 denotes the nth order statistics of the RSS process. The mean of (12) 

is 

E[𝐺𝑀𝑅𝑆𝑆𝑆] = exp[
1

𝑚
 ∑ 𝐸[𝐼𝑛(𝑋𝑡)]]𝑚

𝑖=1  

                       = 𝑒𝑥𝑝 
1

𝑚
 ∑ 𝐸{𝐼𝑛(𝜇) + 𝐼𝑛 (1 +

𝑋𝑡−𝜇

𝜇
)}]𝑚

𝑖=1  

    ≈ exp
1

𝑚
 ∑ 𝐸{𝐼𝑛(𝜇) + 

𝑋𝑡−𝜇

𝜇
−  

(𝑋𝑡−𝜇)^2 

2𝜇2 }]𝑚
𝑖=1  

    ≈ exp [𝐼𝑛(𝜇) −  
𝜎2

2𝜇2
] ;           𝑠𝑖𝑛𝑐𝑒    𝐸[𝑋(𝑡)] = 𝜇        𝑎𝑛𝑑      𝑉𝑎𝑟(𝑋(𝑡) = 𝜎2 

     ≈ 𝜇 (1 −
𝜎2

2𝑚𝜇2)                                                                                                                          (13) 

For large 𝑚, the second term in (13) vanishes, giving E[μGMRSS] ≈ 𝜇. Thus, the GMRSS 

estimator is asymptotically unbiased with 

𝑉𝑎𝑟(GMRSS) ≈ 𝜇2 (1 −
𝜎2

𝑚𝜇2
) − 𝜇2 (1 −

𝜎2

2𝑚𝜇2
)

2

≈
𝑘𝜎2

𝑛𝑚
                                                                     (14) 

Where 𝑘 is a constant depending on the RSS procedure. 

Trimmed Mean Ranked Set Sampling Estimator (TMRSS) 

Let 𝑥1, 𝑥2, ⋯ , 𝑥𝑛. The trimmed mean of 𝑋 is defined as: 

𝑇𝑀 =
1

𝑛 − 2𝑘
∑ 𝑋𝑖

𝑛−2𝑘

𝑖=𝑘+1

                                                                                                                                        (15) 

Where; 𝑛 = total no of observations,  𝑘 = 𝜎𝑛 number of trimmed values, 𝑋𝑖 = the remaining 

values in the trimmed dataset. The trimmed-Mean RSS estimator,TMRSS, is 

𝑇𝑀𝑅𝑆𝑆 = ∑ 𝑤𝑖𝑇𝑖 =

𝑚

𝑖=1

∑ 𝑤𝑖

𝑚

𝑖=1

1

𝑛 − 2𝑘
∑ 𝑋𝑡

𝑛−2𝑘

𝑖=𝑘+1

                                                                                               (16) 

Such that ∑ 𝑊𝑖
𝑚
𝑖=1 = 1. The estimator is unbiased as 

𝐸(𝑇𝑀𝑅𝑆𝑆) = 𝐸[∑ 𝑤𝑖𝑇𝑖  ] =  ∑ 𝑤𝑖𝐸(𝑇𝑖) =

𝑚

𝑖=1

𝜇

𝑚

𝑖=1

 

and 

𝑉𝑎𝑟(𝑇) =
1

(𝑛 − 2𝑘)2
∑ 𝑉𝑎𝑟(𝑋𝑖)

𝑛−2𝑘

𝑖=𝑘+1

≈
(1 − 2𝛼)𝜎2

𝑛(1 − 2𝛼)2
=

𝜎2

𝑛(1 − 2𝛼)
                                                          (17) 
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So that 

𝑉𝑎𝑟(𝑇𝑀𝑅𝑆𝑆) = 𝑉𝑎𝑟 [∑ 𝑊𝑖𝑇𝑖

𝑚

𝑖=1

] =  ∑ 𝑊𝑖
2𝑉𝑎𝑟(𝑇𝑖) =

𝜎2

𝑛(1 − 2𝛼)
∑ 𝑊𝑖

𝑚

𝑖=1

𝑚

𝑖=1

                                           (18) 

When the weights are uniform, 𝑊𝑖 =
1

𝑚
, then 

𝑉𝑎𝑟(𝑇𝑀𝑅𝑆𝑆) =
𝜎2

𝑛𝑚(1 − 2𝛼)
                                                                                                                          (19) 

The Percent Relative Efficiency (PRE) is given as   

𝑃𝑅𝐸(𝜃𝐸 , 𝜃𝑃) =
𝑉𝑎𝑟(�̂�𝐸)

𝑉𝑎𝑟(𝜃𝑃)
𝑋 100                                                                                                                        (20) 

where 𝜃𝑃 denotes the proposed estimator (HMRSS, GMRSS, or TMRSS), 𝜃𝐸  represents the 

baseline MRSS estimator. 

Findings 

This section presents results and a discussion of the findings by using an artificial dataset of 

varying sample size 𝑛, mean 𝜇 , variance 𝜎2, scaling factor 𝑘, number of cycles 𝑚, and trimming 

proportion 𝛼  to validate the efficiency of the proposed estimators. 

Harmonic Mean RSS Estimator  

Using (1), (10) and (20), the values for the variances of the MRSS, HMRSS estimators and the 

Percent Relative Efficiency of the two are calculated and the results presented in Table 1. 

Table 1. Performance of HMRSS against the conventional MRSS 

𝑛 𝑚 𝜇 𝜎2 V(HMRSS) V(MRSS) PRE (%) 

5 3 5 0.5 0.00078 0.03333 4273.1 

   1 0.00157 0.06667 4329.2 

   1.5 0.00226 0.1 4447.8 

   2 0.00296 0.1333 4504.7 

   2.5 0.00329 0.16667 4578.8 

   3 0.00429 0.2 4626.3 

   3.5 0.00552 0.26667 4780.9 

      4 0.00619 0.3 4872.1 

10 5 6 0.5 0.00023 0.017 4383.8 

   1 0.00045 0.03333 4338.8 

   1.5 0.00088 0.05 4444.4 

   2 0.00108 0.08333 4577.6 

   2.5 0.00148 0.1 4708.6 

   3 0.00167 0.13333 4786.4 

   3.5 0.00172 0.16667 4864.9 

      4 0.00185 0.18334 4893.2 
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15 7 7 0.5 0.00019 0.00952 5148.6 

   1 0.00028 0.019 5167 

   1.5 0.00037 0.02857 5194.5 

   2 0.00046 0.03333 5290.5 

   2.5 0.00055 0.0381 5294.7 

   3 0.00072 0.04286 5352.5 

   3.5 0.00081 0.04467 5372.1 

      4 0.00087 0.04734 5536.4 

20 9 8 0.5 0.00005 0.00278 5660 

   1 0.00009 0.00556 6172.8 

   1.5 0.00017 0.00833 5795 

   2 0.00019 0.01389 5847.6 

   2.5 0.00028 0.01667 6391.1 

   3 0.00032 0.01944 5935.5 

   3.5 0.00037 0.02222 6075 

      4 0.00041 0.025 6097.6 

Geometric Mean RSS Estimator 

Using (1), (14) and (20), the results for the variances of the MRSS, GMRSS estimators and the 

PRE of GMRSS to MRSS are calculated respectively. 

Table 2. Performance of GMRSS estimator against the conventional MRSS 

𝑛     𝑚  𝜎2 𝑘 V(GMRSS) V(MRSS) PRE (%) 

5 3 0.5 0.1 0.0033 0.0333 1009.09 

   0.3 0.01 0.0333 333 

   0.5 0.0167 0.0333 199.4 

   0.7 0.0233 0.0333 142.92 

      0.9 0.03 0.0333 111 

10 5 1 0.1 0.002 0.02 1000 

   0.3 0.006 0.02 333.33 

   0.5 0.01 0.02 200 

   0.7 0.014 0.02 142.86 

      0.9 0.018 0.02 111.11 

15 7 1.5 0.1 0.0014 0.0143 1021.43 

   0.3 0.0043 0.0143 332.56 

   0.5 0.0071 0.0143 201.41 

   0.7 0.01 0.0143 143 

      0.9 0.0129 0.0143 110.85 

20 9 2 0.1 0.0011 0.0111 1009.09 

   0.3 0.0033 0.0111 336.36 
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   0.5 0.0056 0.0111 198.21 

   0.7 0.0078 0.0111 142.31 

      0.9 0.01 0.0111 111 

25 11 2.5 0.1 0.0009 0.0091 1011.11 

   0.3 0.0027 0.0091 337.04 

   0.5 0.0045 0.0091 202.22 

   0.7 0.0064 0.0091 142.19 

      0.9 0.0082 0.0091 110.98 

30 13 3 0.1 0.0007 0.0077 1100 

   0.3 0.0023 0.0077 334.78 

   0.5 0.0038 0.0077 202.63 

   0.7 0.0054 0.0077 142.59 

      0.9 0.0069 0.0077 111.59 

35 15 3.5 0.1 0.0006 0.0067 957.14 

   0.3 0.002 0.0067 335 

   0.5 0.0033 0.0067 203.03 

   0.7 0.0047 0.0067 142.55 

      0.9 0.006 0.0067 111.67 

Trimmed Mean RSS Estimator 

Using (1), (19) and (20), the values for the variances of the MRSS, TMRSS estimators and their 

PRE are calculated and the results are shown. 

Table 3. Performance of TMRSS estimator against the conventional MRSS 

𝑛    𝑚 𝜎2 𝛼 Var(TMRSS)   Var(MRSS)               RE 

5 3 0.5 0.05 0.037 0.0333 0.9 

10 5 1 0.1 0.025 0.02 0.8 

15 7 1.5 0.15 0.0204 0.0143 0.7 

20 9 2 0.2 0.0185 0.0111 0.6 

25 11 2.5 0.25 0.0182 0.0091 0.5 

30 13 3 0.3 0.0192 0.0077 0.4 

35 15 3.5 0.35 0.0222 0.0067 0.3 

40 17 4 0.4 0.0294 0.0059 0.2 

45 19 4.5 0.45 0.0526 0.0053 0.1 
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Figure 1. Efficiency plots of the HMRSS, GMRSS and TMRSS estimators for varying values 

of 𝑛 and 𝑚 when 𝑘 = 0.30, 𝛼 = 0.05, 𝜇 = 5.00 and 𝜎2 = 0.50 

 

Figure 2. PRE plots of the HMRSS, GMRSS and TMRSS estimators for varying values of 𝑛 

and 𝑚 when 𝑘 = 0.30, 𝛼 = 0.05, 𝜇 = 5.00 and 𝜎2 = 0.50 
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Figure 3. 3D PRE Plots of HMRSS and GMRSS vs MRSS for varying values of 𝜎2, 𝑘 and 𝑛 

Discussion 

Evidence from Table 1 and Figure 1, HMRSS consistently yields lower variance than MRSS, 

indicating higher precision. As sample size (𝑛) increases, both variances decrease, but HMRSS 

declines faster. The highest gain in efficiency occurs at small sample sizes, making HMRSS 

ideal for limited data scenarios. Similarly, Figure 3 depicts that PRE values remain high across 

all sample sizes, indicating that HMRSS and GMRSS consistently outperform MRSS. At 

smaller sample sizes (𝑛 =  5, 10, 15), PRE is significantly higher (>  100%), showing drastic 

efficiency improvements. Beyond 𝑛 = 30, though GMRSS remains superior but PRE values 

show a diminishing trend.  

Table 2 and Figure 1 depict that GMRSS is highly efficient compared to MRSS, especially when 

sample sizes are small. As population variance (𝜎2) increases, the efficiency of GMRSS remains 

high but with slightly diminishing gains. GMRSS is recommended for applications requiring 

high-precision estimations with limited samples. These findings confirm the theoretical 

advantage of GMRSS in practical sampling applications, reinforcing its use over MRSS when 

sample size is small. statistical estimations. 

Based on the results in Table 3, the Var(MRSS) decreases significantly as 𝑛 increases, 

demonstrating improved precision with larger datasets. Var(TMRSS) reduces as 𝑛 increases, 

it slightly stabilized between 20 ≤ n ≤ 25. Beyond 𝑛 = 25, Var(TMRSS) grows again. The 

relative efficiency decreases linearly from 0.90 to 0.10 as 𝑛 increases from 5 to 45. This suggests 

that TMRSS is more efficient for smaller sample sizes but not for larger ones. That is, TMRSS 

is relatively efficient when the sample size is small (≤  15). For larger 𝑛, it becomes less efficient 

compared to MRSS. Parameters such as 𝜎2  and 𝛼 affect the variance for TMRSS more 

significantly compared to MRSS, underscoring the need for careful parameter selection during 

the design phase.  

Using Figure 2 and Figure 3, the HMRSS and GMRSS have highest PRE values across varying 

values of 𝑛. The PRE values for HMRSS, GMRSS and TMRSS decrease steadily as 𝑛, 𝑘 , σ2 

increases, affirming that RSS designs are valid with small sample size, hence minimizing the 

survey cost. 
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Conclusion and Implications 

The findings from this research provide strong evidence that alternative RSS estimators such 

as HMRSS and GMRSS are viable and superior alternatives to the extant MRSS estimator 

evidenced from reduced variance and increased percent relative efficiency irrespective of 

values of 𝑛, 𝑚, σ2, 𝑘  making them to performed exceptionally well, demonstrating superior 

efficiency and serving as credible alternatives in practical applications where higher precision 

of population parameters is demanded. Conversely, the TMRSS estimator outperforms the 

MRSS estimator on very few occasions, which suggests that TMRSS may be better suited for 

specific data scenarios where extreme observations contribute excessive noise rather than 

providing useful information. Overall, the study infers that both HMRSS and GMRSS 

estimators significantly enhance efficiency and reliability in parameter estimation, offering 

more informative statistical inference than the traditional MRSS method. 

Arising from the findings and conclusion above, the following recommendations have been 

advanced: The HMRSS and GMRSS estimators should be considered for application in real-

world problems. Future studies should explore conditions under which the Trimmed Mean 

RSS estimator may outperform MRSS. By implementing these recommendations, statisticians 

can maximize the benefits of the proposed alternative RSS estimators, particularly HMRSS and 

GMRSS in any real applications. 
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