A thinking on Quantum Physics and common sense


DOI:
https://doi.org/10.71350/3062192521Keywords:
Quantum physics, interpretation of physics, physics models, probabilism, realismAbstract
The author attempts to answer the questions there are in the title of this paper. These questions are questions that scientists and philosophers have been asking themselves for many decades since Quantum Mechanics was formulated to explain the phenomena of the atomic and subatomic world. First of all a short but complete historical review of the transition between Classical Mechanics and Quantum Mechanics there is. It is preceded by some of the methodological premises that fit a certain vision of science. Then the author examines the issues and debates that have occurred on aspects of quantum mechanics such as realism, non-locality and probabilism (in contrast to determinism of Classic Mechanics). In doing this author llustrates the foundations of the various interpretations of quantum mechanics which, in an attempt to resolve these problems, have been given. The absurdities, and conflicts with the common sense, of quantum mechanics are shown to be largely apparent. In doing this, we examine the analogies of classical physics, as well as those of everyday life. Recent experimental results are taken into consideration. It is concluded that Quantum Mechanics presents elements of rupture more with Classical Physics than with the everyday experience.
Downloads
References
Artemi, C. (2006). Un corridoio chiamato scienza. De Rocco Press.
Artemi, C. (2015). Un corridoio chiamato scienza (Renewed edition). Edizioni Creative.
Artemi, C. (2024). A passage called science. Self-published, Amazon.
Balbi, A. (2022). Retrieved from https://www.youtube.com/watch?v=lf5ce3do5l4
Bell, J. S. (1964). On the Einstein, Podolsky, Rosen paradox. Physics Physique, 1(3), 195–200. DOI: https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of hidden variables I. Physical Review, 85(2), 166–179. DOI: https://doi.org/10.1103/PhysRev.85.166
Born, M. (1909). Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips. Annalen der Physik, 335(11), 1–56. DOI: https://doi.org/10.1002/andp.19093351102
Bohr, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 48, 700. DOI: https://doi.org/10.1103/PhysRev.48.696
Braccesi, A. (1968). Una storia della Fisica Classica. Zanichelli.
Colciaghi, P. (2023). Einstein-Podolsky-Rosen experiment with two Bose-Einstein condensates. Physical Review, 10. DOI: https://doi.org/10.1103/PhysRevX.13.021031
Descartes, R. (1644). Principia philosophiae.
Del Pretto, O. (1904). Ipotesi del etere nella vita del Universo. Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti, 63(2), 439–500.
Eigler, D. M., & Schveizer, E. K. (1990). Positioning single atoms with a scanning tunnelling microscope. Nature, 344, 524–526. DOI: https://doi.org/10.1038/344524a0
Einstein, A. (1981). Relatività esposizione divulgativa. Boringhieri.
Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777. DOI: https://doi.org/10.1103/PhysRev.47.777
Everett, H. (1957). Relative state formulation of quantum mechanics. Reviews of Modern Physics, 29(3), 454–462. DOI: https://doi.org/10.1103/RevModPhys.29.454
Ferlin, F., & Hugues, C. (2020). Vortex theories in the early modern period. Encyclopaedia of Early Modern Philosophy and the Sciences, 1–6. DOI: https://doi.org/10.1007/978-3-319-20791-9_156-1
Feynman, R. (1942). The principle of least action in quantum mechanics (Doctoral dissertation, Princeton University). Published (2005) as Feynman’s thesis: A new approach to quantum theory. World Scientific. DOI: https://doi.org/10.1142/9789812567635_0001
Freedman, S. J., & Clauser, J. F. (1972). Experimental test of local hidden-variable theories. Physical Review Letters, 28(14), 938–941. DOI: https://doi.org/10.1103/PhysRevLett.28.938
Glick, D. (2023). The principle of least action and teleological explanation in physics. Synthese, 202, 25. Retrieved from https://link.springer.com/article/10.1007/s11229-023-04251-x DOI: https://doi.org/10.1007/s11229-023-04251-x
Goldstein, H. (1971). Meccanica classica. Zanichelli.
Jacoby, M. (2005). Atomic imaging turns 50. Analytical Chemistry, 83, 48. Retrieved from https://cen.acs.org/articles/83/i48/Atomic-Imaging-Turns-50.html DOI: https://doi.org/10.1021/cen-v083n048.p013
Kiesewetter, D., et al. (2018). Probing electronic binding potentials with attosecond photoelectron wavepackets. Nature Physics, 14, 68–73. DOI: https://doi.org/10.1038/nphys4279
Mach, E. (1901). Die Mechanik in ihrer Entwickelung historisch-kritisch, dargestellt. Brockhaus.
Majorana, E. (1942). Il valore della leggi statistiche nella Fisica e nelle scienze sociali. Scientia, 36, 58–66.
Piveteau, A., et al. (2023). Entanglement-assisted quantum communication with simple measurements. Nature Communications, 13, 7878. DOI: https://doi.org/10.1038/s41467-022-33922-5
Resnick, R. (1968). Introduzione alla relatività ristretta. Casa Editrice Ambrosiana.
Rovelli, C. (2020). Helgoland. Adelphi Press.
Schaffner, D., et al. (2024). Quantum sensing in tweezer arrays: Optical magnetometry on an individual-atom sensor grid. PRX Quantum, 5, 010311. DOI: https://doi.org/10.1103/PRXQuantum.5.010311
Tung, D. (2021). Quantum field theory. University of Cambridge. Retrieved from http://www.damtp.cam.ac.uk/user/tong/qft.html
Verstraten, J., et al. (2024). In-situ imaging of a single-atom wave packet in continuous space. arXiv:2404.05699v1 [quant-ph].
Voltaire. (1734). Lettres écrites de Londres sur les Anglois. Passage retrieved from https://fisicamente.blog/2023/09/29/due-lettere-inglesi-di-voltaire-la-xiv-e-la-xv/
Wernstein, G. (n.d.). A discussion of special relativity. arXiv:1205.022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Advanced Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.